
www.manaraa.com

DYNAMIC LOAD BALANCING POLICIES FOR
CLUSTERED DISTRIBUTED SYSTEM

JAY LIM WEI YIK

MASTER OF SCIENCE
(INFORMATION TECHNOLOGY)

MULTIMEDIA UNIVERSITY

MAY 2014

Siti Hasm
ah

Digital Library

www.manaraa.com

CO

I
CD
CO

CD

D
c q '

CD

O "

CD

www.manaraa.com

DYNAMIC LOAD BALANCING
POLICIES FOR CLUSTERED

DISTRIBUTED SYSTEM

BY

JAY LIM WEI YIK

B.Sc. (Hons), Multimedia University, Malaysia

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

(by Research)

in the

Faculty of Computing and Informatics

MULTIMEDIA UNIVERSITY
MALAYSIA

May 2014

Siti Hasm
ah

Digital Library

www.manaraa.com

ProQuest Number: 1606045

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 1606045

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

www.manaraa.com

The copyright of this thesis belongs to the author under the terms of

the Copyright Act 1987 as qualified by Regulation 4(1) of the Multimedia

University Intellectual Property Regulations. Due acknowledgement shall

always be made of the use of any material contained in, or derived from,

this thesis.

© Jay Lim Wei Yik, 2014

All rights reserved

ii

Siti Hasm
ah

Digital Library

www.manaraa.com

DECLARATION

I hereby declare that the work has been done by myself and no portion of the

work contained in this Thesis has been submitted in support of any application for any

other degree or qualification on this or any other university or institution of learning.

Jay Lim Wei Yik

iii

Siti Hasm
ah

Digital Library

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor, Dr. Poo

Kuan Hoong, whose area is in distributed system, has been guiding me throughout this

research. He continually and convincingly conveyed a spirit of adventure in regal'd

to research. Without his guidance and persistent help this thesis would not have been

possible.

Also, thank you to my co-supervisor, Dr. Yeoh Eng-Thiam, who has shared his

experience and provided to me his inputs in this research.

Thank you to those who has provided their feedbacks on my research; especially

those that are in the research committee and to those that have evaluated my publications.

Finally, thanks to my parents for the moral support, motivation, and the amazing

chances they’ve given me over the years.

iv

Siti Hasm
ah

Digital Library

www.manaraa.com

ABSTRACT

In parallel distributed computing system, lightly and overloaded nodes can cause

load imbalancing and affect the total time needed to complete a task to increase. Besides

that, since the distributed system shared by multiple users with their own computing

task, load imbalance could bring impact on to other computing tasks. Lightly loaded

nodes which are capable of compute more jobs, might finish their task faster and remain

idle whilst heavily loaded nodes arc still racing against the clock to complete then-

computing tasks. As a result, the utilisation of distributed system is not optimised. In

order to solve this, load balancing algorithm is employed to balance the loads of each

nodes. A load balancing algorithm can be further categorised as static or dynamic load

balancing. A static load balancing algorithm formulates the job distribution decision

before the execution of the program; during the compilation time. Whilst, dynamic

load balancing algorithm distribute jobs during the execution of the program. In other

words, static approach is more effective in a homogeneous environment because each

node knows the structure of the system. On the contrary, a heterogeneous environment

is more suitable to use dynamic approach because the structure of the system and nodes

are not known until the execution of the program. Nodes in this approach use the

current system state information during the execution of the program to formulate the

job distribution decision. At any point of time, the decision regarding a job distribution

might change due to the variation of the system. Furthermore, dynamic load balancing

can be implemented in a centralised or decentralised model. The centralised model

is where one node will formulate the job distribution decision, and decentralised

model incorporates at least two nodes to formulate the decision. In dynamic load

balancing, load information exchange between nodes is an important factor. Especially

in decentralised model, where at least two nodes are taking part in the formulation of a

job distribution decision. In decentralised model, an overloaded node that distribute jobs

to lightly loaded node is known as sender initiated load balancing. A receiver initiated

load balancing is where lightly loaded node request jobs from an overloaded node.

Both sender and receiver initiated load balancing need an up-to-date load information

in order to optimised the formulation of job distribution. However, exchanging load

v

Siti Hasm
ah

Digital Library

www.manaraa.com

information frequently can lead to an increase of communication messages. Besides

the exchange of load information, the formation of the distributed system is also an

important factor for load balancing. In a decentralised system, connecting each node to

all other nodes in the system will increase the communication messages because each

node needs to exchange load information with all other nodes in the system; so that the

job distribution decision can be formulated. There are numerous load balancing methods

in the literature emphasize on the process of load information exchange towards load

balancing. Mutual information feedback is one of the method discussed in the literature,

where the exchange of load information take place during the transfer of a job from one

node to another. A load balancing algorithm namely SIDDLB, using this information

exchange method together with the formation of each node connected to the nodes

which are relatively more computing power. This thesis enhanced the SIDDLB approach

and conducted a series of comparitive performance test with SIDDLB approach. In

order to validate the system utilisation of the load balancing algorithm, overall response

time of each computational task is measured. The simulation results show that the

proposed method showing an overall improvement over the SIDDLB approach.

vi

Siti Hasm
ah

Digital Library

www.manaraa.com

TABLE OF CONTENTS

COPYRIGHT PAGE ii

DECLARATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: INTRODUCTION 1
1.1 Background 2
1.2 Research Problem 4
1.3 Research Objectives 5
1.4 Research Outline 5

CHAPTER 2: LITERATURE REVIEW 7

2.1 Centralised Model 9
2.2 Decentralised Model 10

2.2.1 Neighbour List 12
2.2.2 Information Exchange 15

CHAPTER 3: METHODOLOGY 18
3.1 Network Simulator 18

3.1.1 OMNeT++ 18
3.1.2 OverSim 19

3.2 The Impact of Different Sizes of Workloads 20
3.2.1 Distributed System Model 21
3.2.2 Computation n by Numerical Integration 23

3.3 Heuristic Neighbour Selection Algorithm 24
3.3.1 Load Balancer Model 25
3.3.2 Information Policy 28
3.3.3 Neighbour List 29
3.3.4 Secondary Neighbour List 30
3.3.5 Load Prediction 31
3.3.6 Transfer Policy 33
3.3.7 Simulation Model 35

vii

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER 4: RESULTS AND DISCUSSION 38

4.1 Effect of Workload Imbalance 38
4.1.1 Single Processor Simulation 39
4.1.2 Distributed Processor Simulation 40

4.2 Decentralised Dynamic Load Balancing 45
4.2.1 Effect on Response Time 45
4.2.2 Effect on The Number Communication Messages 51

CHAPTER 5: CONCLUSION 53

5.1 Contributions 55

REFERENCES 56

PUBLICATION LIST 60

viii

Siti Hasm
ah

Digital Library

www.manaraa.com

LIST OF TABLES

Table 3.1 Scenarios of Workload Assignment to SP 23
Table 3.2 Various Computing Powered Load Balancers 36
Table 3.3 Scenarios of Pour Jobs in Various Computing Powered Load Balancers 37

Table 4.1 Overall Average Response Time 46
Table 4.2 Total Jobs Created at Each Node 52

ix

Siti Hasm
ah

Digital Library

www.manaraa.com

LIST OF FIGURES

Figure 2.1 Classification of Scheduling 8
Figure 2.2 Centralised and Decentralised Distributed System Model 9
Figure 2.3 Tree-based Distributed System Model 9
Figure 2.4 A Sender and Receiver Initiated Load Balancing Model 10
Figure 2.5 A Hierarchical Distributed System Model 12
Figure 2.6 Neighbour List for Node A and Node B 15

Figure 3.1 OMNeT++ Simulation Model 18
Figure 3.2 OverSim Framework Model 19
Figure 3.3 Tree-based Distributed System Model 21
Figure 3.4 Visual Representation of Function f (x) 23
Figure 3.5 Decentralised Dynamic Load Balancing System Model 25
Figure 3.6 General Flow of a Load Balancing Algorithm 27
Figure 3.7 Information Update Process Algorithm 28
Figure 3.8 Scenario of a Node With an Empty Neighbour List 29
Figure 3.9 Algorithm For The Prediction of The Secondary Neighbour List 32
Figure 3.10 Algorithm To Select The Optimal Neighbour 33
Figure 3.11 Process Flow When Job Arrives At Node 34
Figure 3.12 Network Diagram of 10 Load Balancers 35

Figure 4.1 Overall Computation Time for Single Processor 39
Figure 4.2 Overall Computation time of Scenario 1 for Distributed Processor 41
Figure 4.3 Overall Computation Time of Scenario 2 for Distributed Processor 42
Figure 4.4 Overall Computation Time of Scenario 3 for Distributed Processor 42
Figure 4.5 Overall Computation Time of Scenario 4 for Distributed Processor 43
Figure 4.6 Overall Computation Time of Scenario 5 for Distributed Processor 43
Figure 4.7 Overall Computation Time of Scenario 6 for Distributed Processor 44
Figure 4.8 Overall Average Response Time for Each Scenario 45
Figure 4.9 Average Response Time for Scenario 1 46
Figure 4.10 Average Response Time for Scenario 2 48
Figure 4.11 Average Response Time for Scenario 3 49
Figure 4.12 Average Response Time for Scenario 4 50
Figure 4.13 The Total Number of Communication Messages 51

X

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER 1

INTRODUCTION

Parallel computing is an ideal solution for computational intensive application

as it breaks up a large task into multiple smaller task called jobs. After that, each job

can be executed concurrently in a multiple processors environment. The advantage of

parallel computing is to speed up the computation time of a task. A method to achieve

parallel computing in a distributed system which consists of geographically scattered in­

terconnected heterogeneous computing nodes that contribute their computing resources

to provide seamless access to high performance computing resources. An example of

such system is grid computing which combines heterogeneous computing resources

from multiple administrative domains to achieve a common goal (Foster, Kesselman, &

Tuecke, 2001). Heterogeneous nodes are differ in terms of computing resources, such

as computing power, memory storage, and network bandwidth. Which means, each

node is not having the same computing capability. Due to the heterogeneity of nodes,

higher computing capability nodes, that generally have more computing resources, may

complete their assigned jobs faster to those lower computing capability nodes. So, by

distributing jobs evenly to each node may increase the overall of completion time or

response time of a task. This is also refer as load imbalance because there are nodes in

the system arc under utilising or idle whilst some nodes still have jobs to be executed.

By applying load balancing algorithm, it can distribute jobs from heavily loaded nodes

to lightly loaded nodes so that the resources in the distributed system are always fully

utilising and also to speed up a computational application (Zhou, 1988). A heavily

loaded node is a node that has exceeds its maximum computing capability, where as a

lightly loaded node is below its average computing capability. In short, the goal of a

load balancing algorithm is to maximise the system resources and minimise the overall

response time of a task.

1

Siti Hasm
ah

Digital Library

www.manaraa.com

1.1 Background

Load balancing algorithm can be categorised into static or dynamic load bal­

ancing (Casavant & Kuhl, 1988). Both types of algorithm aimed to optimise the

utilisation of distributed system by distributing jobs across nodes. A static load bal­

ancing algorithm tends to formulates job distribution decision before the execution of

a program, that is the information needed to formulate the decision is already known

during the compilation time. On the other hand, dynamic load balancing algorithm

formulates job distribution decision at the runtime of a program with the use of the

current system state information. A static approach works at its most effective when

it is a homogeneous environment. Only in homogeneous environment, each node is

having the same property and the structure of the distributed system is already known.

In a heterogeneous environment, where nodes arc distinguished by their computing

capabilities, it is more difficult to determine the load level of each node at all time. The

algorithm that fits such environment is the dynamic load balancing algorithm because it

formulates job distribution at the runtime and it uses the current state information to

formulate the decision.

Dynamic load balancing algorithm can be implemented in a centralised or

decentralised model. Both models describe how load balancers are formed. The

centralised model, is which there is only one node that will be the load balancer to

decide on the formulation of the job distribution and thus, the other nodes in the

distributed system will have to update their load information to this node. As for the

decentralised model, there are at least two nodes will be the load balancers and they

work together to formulate the job distribution decision. One common behaviour from

these models is that both require each node to send their load information to the load

balancers so that the load balancers can workout with the job distribution decision

based on their current load in order to maximise the system utilisation. The difference

between the two models comes in when the scalability of a system increases. Which

means, the size of the distributed system is increasing. The centralised model will be

encountering communication bottleneck at the load balancer because all nodes will

have to send their load information to the load balancer. The communication bottleneck

2

Siti Hasm
ah

Digital Library

www.manaraa.com

will cause a single point of failure or a less optimised job distribution decisions due to

the late arrival of the load information. The decentralised model more likely to scale up

since there are at least two load balancers in the distributed system to workout with the

job distribution decision. In case the one of the load balancer is down, there is another

load balancer.

Load balancers in decentralised model can be categorised as sender initiated

or receiver initiated. A bidding algorithm proposed by Stankovic and Sidhu (1984),

initiates a load transfer from a heavily (overloaded) node to lightly loaded node. This is

categorised as the sender initiated approach. The overloaded node sends a job bidding

request to other nodes in the system and wait for their reply. After all other nodes

replied, the node with the highest bid will receive job from the overloaded node. On

the other hand, a receiver initiated method is whereby nodes seeking for jobs instead

of sending request to offload jobs. For example, the drafting algorithm proposed by

Ni, Xu, and Gendreau (1985) work in such a way that each node sends out a draft of a

job model to search for more jobs. The drafted job model describes the job that a node

can handle. If there is a similar job found according to the drafted job model, that job

will be transferred to the requester. Casavant and Kuhl described that a sender initiated

approach is when an overloaded node that will initiate the job transfer request, and

a receiver initiated approach is lightly loaded node seeking for more jobs to execute.

Despite the different approach, both methods often need the load information of other

nodes in order to formulate a job distribution decision. Hence, the load information

exchange between nodes is an important factor which could affect the job distribution

decision.

As far as the exchange of load information is a crucial element in determining

the job distribution decision, Acker and Kulkarni (2007) proposed an algorithm to

adaptively keep track of nodes’ load information. The algorithm stores a list of nodes

containing their load information and the list is always updated through the exchange

of load information periodically. This has given an advantage to the algorithm to be

able to keep track of node joining and leaving the system. However, as there are more

3

Siti Hasm
ah

Digital Library

www.manaraa.com

nodes joining into the system, managing the list has became another problem and also,

the increase of the amount of communication messages. Lu, Subrata, and Zomaya

(2006) introduced a technique called mutual information feedback to exchange load

information between nodes which can minimise the overwhelming of communication

messages.

Apart from the exchange of load information, the construction of a neighbour

list is also an important factor in decentralised approach. It can faster in determining

the possible node to offload the workload during the event of an overloading node.

Nandagopal, Gokulnath, and Uthariaraj (2010, 2011) have proposed a sender initiated

algorithm called as Sender Initiated Decentralised Dynamic Load Balancing (SIDDLB),

which forms the neighbour list based on the a) computing power, and b) network delay.

As a result, the neighbour list will only contain those nodes that are nearby and higher

computing power. So, whenever a node is overloaded, a job is always transferred to a

higher computing powered node.

1.2 Research Problem

The challenges of a dynamic load balancing algorithm is the load information,

that describes the a) construction of neighbour list, and b) load information exchange

method, holds the key to optimise a job distributed decision in a decentralised envi­

ronment. The construction of a neighbour list can be as simple as storing all nodes or

selectively stores nodes in the system. The neighbour list construction approach used in

SIDDLB as described in section 1.1, selects only nodes which arc relatively higher in

computing power with minimum network delay. Assuming that the network delay is

negligible, this leaves the node that posses the highest computing power in the system

would have an empty neighbour list. Furthermore, when this node is overloaded whilst

a job arrives, it has no other options but to accept the job since it has no neighbours to

offload the job to. In other words, there arc no other nodes in the distributed system

which are more capable than this node. The challenges and motivation of this research

are:

4

Siti Hasm
ah

Digital Library

www.manaraa.com

1. The neighbour list construction in SIDDLB approach is designed to accommodate

feasible nodes. And this has result in some nodes with an empty neighbour list,

which could affect the utilisation of resources in a distributed system.

2. The information exchange protocol used is mutual information feedback which

highly depends on a job transfer to update the load information of both sender and

receiver. If a node continuously execute jobs locally, that is the node is executing

job by itself, then the neighbour list would not be updated.

3. Again, with regards to the highest computing powered node, it should not be

leaving the neighbour list empty. In some events where the lower computing ca­

pability nodes are also the lightly loaded nodes and they are capable of executing

the jobs rather letting them idle. They could ease the higher computing powered

nodes by offloading some jobs from the higher computing powered nodes.

1.3 Research Objectives

This research focuses on the study of a dynamic load balancing algorithm in a

distributed system. Specifically, the study of the load information policy. The following

are the objectives of this research:

1. To analyse and design of a decentralised dynamic load balancing algorithm that

focuses on the neighbour list.

2. To develop a load information exchange mechanism in order to keep the neighbour

list up-to-date.

1.4 Research Outline

In this research work, the work is organised by first investigate the importance

of a parallel computing in distributed system, which lead to the study of the significant

impact of workload towards the distributed system. Then, follow by the study of decen­

tralised dynamic load balancing algorithm. In chapter 2, the structure of decentralised

system and the related work of load balancing algorithm are described.

5

Siti Hasm
ah

Digital Library

www.manaraa.com

In chapter 3, the research tools, methods and simulation model used arc de­

scribed. This includes the simulation study of the workload impact in a distributed sys­

tem and also the proposed load balancing algorithm Heuristic Neighbour Selection Algorithm

(HNSA) are described in detail.

Chapter 4 will discuss the results from the impact study. Besides that, the

proposed HNSA algorithm in 3 is also simulated and discussed.

Finally, chapter 5 summarises the whole thesis and the research outcomes.

Besides that, the future work is also described to improve on the proposed HNSA

algorithm.

6

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER 2

LITERATURE REVIEW

The increasing usage of computing intensive application and ubiquitous com­

puting have led to the use of distributed parallel computing such as grid system. As

explained by Iosup, Dumitrescu, Epema, Li, and Wolters (2006) on How are Real

Grids Used?, that a grid system is made up of multiple clusters from which each cluster

consists of computers connected to each other locally to solve a common problem.

Clusters arc often heterogeneous and geographically dispersed. The heterogeneity

of clusters can result in load imbalance whereby a cluster can be in the state of idle,

heavily loaded or lightly loaded with jobs. Load imbalance decreases the utilisation

of resources in the system with some clusters sitting idle while others still processing

jobs. A research study by Groot, Goda, and Kitsuregawa (2010) on the data intensive

distributed computing such as Hadoop supported this point. Besides the grid which cou­

pled clusters to work on a common goal where load balancing issue concerns, another

type of distributed system described as peer-to-peer computing which allows computing

resources to join and leave the system freely. Lor example, the SETI@Home project

(Anderson, Cobb, Korpela, Lebofsky, & Werthimer, 2002) which focuses on using

public computing resources to analyse the radio signals to search for extra terrestrial

intelligence. Any personal computer around the world can participate in this system

to assist in analysing the radio signals. Another commonly use of load balancing is

in the web that can overcome flash crowd as well as those request that requires larger

time scale to serve (Ranjan & Knightly, 2008). Kalantari and Akbari (2008) employed

prediction method into the load balancing algorithm as well as considering the deadlines

of the tasks into account. Mamat, Lu, Deogun, and Goddard (2012) focused on using

real-time divisible load technique towards load balancing in a clustered environment

for applications that involve in a huge data to be computed.

7

Siti Hasm
ah

Digital Library

www.manaraa.com

Scheduling

Local Global

Static Dynamic

Figure 2.1: Classification of Scheduling

Scheduling algorithm can be classified into local scheduling and global schedul­

ing (Casavant & Kuhl, 1988; Waraich, 2008; Mukhopadhyay, Ghosh, & Mukherjee,

2010). A local scheduling refers to the scheduling of task at the operating system level.

On the other hand, a distributed system level of scheduling is known as global schedul­

ing which formulates the decision of which is to execute a task in order to achieve

minimum execution time. Moreover, a global scheduling can be either implemented

in a centralised model or decentralised model. A centralised model consists of only

one node to formulate the scheduling decision, whereby the decentralised model has

more than one node, assisting each other to decide at the scheduling process. In global

scheduling process, despite it is implemented in a centralised or decentralised model, a

job scheduler has to know about the load status of other nodes prior to formulate job

distribution decision. In concerning about the method to obtain load status, this can

be further categorised into static and dynamic load balancing. A static load balanc­

ing is which the load information required to formulate the decision is known before

the execution of the task and can be only assigned once. On the contrary, dynamic

load balancing algorithm formulates the decision during the runtime of the system

which uses the current state information of the system and able to reschedule task to

another feasible node if necessary. Fig. 2.1 and Fig. 2.2 illustrate the centralised and

decentralised model, and the classification of scheduling algorithm.

8

Siti Hasm
ah

Digital Library

www.manaraa.com

Centralised Decentralised

Figure 2.2: Centralised and Decentralised Distributed System Model

Figure 2.3: Tree-based Distributed System Model

2.1 Centralised Model

A tree-based task scheduling model illustrated in Fig. 2.3 has a centralised load

balancing control (Ahn, Youn, Jeon, & Lee, 2007; Barazandeh, Mortazavi, & Rahmani,

2009; Barazandeh & Mortazavi, 2009; Lin & Shen, 2010). Ahn et al. (2007) uses

fuzzy logic controller in the load balance to overcome sudden burst of tasks within

a short time period. Barazandeh et al. (2009); Barazandeh and Mortazavi (2009)

proposed a hierarchical structured load balancing that has both the simplicity of static

and adaptiveness of dynamic methods. Lin and Shen (2010) described that there are 3

9

Siti Hasm
ah

Digital Library

www.manaraa.com

types of nodes in this model: i) global load balancer, which manages the distributed

system resources and handle arrival jobs, ii) local load balancer, which is the node

that is connected directly under the global load balancer and manages a cluster of

computing nodes, and iii) P2P computing node, which connects to its own respective

local load balancer and execute all the tasks requested by its local load balancer. Besides

that, this approach is easy to implement because it has a global load balancer which

is collecting the load information of its local load balancers and can apply to many

parallel programming model such as divide and conquer. However, when it comes to

the scalability of the system, the global load balancer and local load balancers will

experience communication bottleneck and over a prolonged period of time, it could fail

the whole system.

2.2 Decentralised Model

In a decentralised model, nodes often have to keep track of who their neighbours

are and constantly have to update their load information in order to perform a job

distribution decision. Unlike in the centralised approach which the knowledge about

all the nodes in the distributed system only resides at one load balancer, decentralised

approach keeps the neighbour list in more than one node and thus, it is important to

maintain those load information in the neighbour list up-to-date.

Receiver InitiatedSender Initiated

Figure 2.4: A Sender and Receiver Initiated Load Balancing Model

10

Siti Hasm
ah

Digital Library

www.manaraa.com

In a decentralised model, any nodes arc able to trigger the load balancing

algorithm since there is no longer a centralised load balancer to keep track of all nodes.

In particular, the load balancing algorithm can be triggered by an overloaded or lightly

loaded node, which is known as sender or receiver initiated respectively. Fig. 2.4

illustrates sender and receiver initiated load balancing model. A node with label H

represents an overloaded node, L represents a lightly loaded node, and N represents the

node is neither in both state. Besides that, a node node with an arrow pointing outwards

is the node which initiate the load balancing algorithm. Stankovic and Sidhu (1984)

presented a bidding algorithm which is an example of sender initiated load balancing

algorithm. During the load balancing process, an overloaded node sends out a bidding

request to other nodes to bid for its jobs. On the receiver side, upon receiving the

bidding request, it replies back to the sender with a bid placement. After collecting all

of the bids from the system, the sender then will select the winner and transfer some

jobs to it.

As for the receiver initiated load balancing algorithm, Ni et al. (1985) proposed

a drafting algorithm which the lightly loaded nodes arc responsible for the balancing

of the system. Once a node has become lightly loaded, it will first check the load

of all other nodes in the system. If there are no overloaded nodes, then the system

is considered to be balanced. Otherwise, the lightly loaded nodes have to send draft

request to those overloaded nodes in order to draft the age of their jobs. Upon receiving

the draft requests from the overloaded nodes, then the lightly loaded nodes request

the overloaded nodes to send the oldest job. It is noted that the nodes in either sender

or receiver initiated model are require to know their neighbours in other to perform

load balancing and the methods to update the load information which is known as the

information exchange process. Hence, the construction of neighbour list, as well as

the information exchange process is an important factor in rescheduling jobs to other

nodes.

11

Siti Hasm
ah

Digital Library

www.manaraa.com

Figure 2.5: A Hierarchical Distributed System Model

2.2.1 Neighbour List

Gupta and Gopinath (1990) presented a two levels load balancing in a hier­

archical distributed system. The neighbour list construction proposed by Gupta and

Gopinath is to partition all the nodes into a desirable group size based on the load of

the network communication link to another node. If a node frequently communicates to

another node through a heavy loaded link, both nodes will be separated into different

groups. This process will continue to separate all the nodes until the desirable size of a

group has reached. Once the limit of a group has reached, a new group will be created.

Eventually, the distributed system forms a set of groups. For example, in Fig. 2.5

illustrates the distributed system model with the maximum desirable size of a group

is 5. Moreover, since the links between each cluster are consider to be heavily loaded

communication link, each group will balance the load among themselves in order to

minimise the communication to another partition. The inter group load balancing is

done only if the intra group load balancing fails. In summary, this approach presented

two types of neighbour list. The first neighbour list which made up of nodes within a

group which given the higher priority for load balancing and the second list consists of

nodes from another group which will be used for load balancing if the initial list has

fail to balance. Besides that, the construction of neighbour list is depends on the load of

network link and thus, this approach is best for nodes with homogeneous computing

12

Siti Hasm
ah

Digital Library

www.manaraa.com

power. Antonis, Garofalakis, Mourtos, and Spirakis (2004) presented a virtual binary

tree structure over the actual network and demonstrated a low communication message

using difference-initiated technique for the load balancing. More recently, Stavrinides

and Karatza (2009, 2010) proposed a similar approach, which is using hierarchical

based distributed system, in a homogeneous distributed real-time system; such as video-

on-demand. Besides that, due to the structure of the system, it also tends to encounter

network congestion. Furthermore, when the deadline of the job is a factor, a real-time

system has to trade off the precision of the computations for time, hence, it allows

imprecise computations; e.g. lowering the quality of the video. Grande and Boukerche

(2011) uses hierarchical approach to evenly distribute the load for a large-scale HLA

simulations in a heterogenous environment. The tree structure able to detect imbalances

and repartition the distributed load.

Acker and Kulkarni (2007) proposed a control protocol to dynamically construct

the neighbour list for a node. This has given the algorithm the ability to accommodate

nodes joining and leaving the system at any point of time. Besides, Acker and Kulkarni

assume that the system has to be able to support multicast messages. For example, a

node sends a multicast message to the other nodes in the distributed system periodically

to notify other nodes about its load information or insert it into their neighbour list if

it does not exists. This action is being performed periodically by other nodes as well.

For example, when a node A receives a multicast message from another node B, A will

first check if B is its neighbour. If B is not found in A, then A will insert B into its

neighbour list. Otherwise, the load information regarding the sender, which is B, will

be updated to the neighbour list of A. Again, this process is repeated periodically and

whilst during the load balancing process, nodes arc only require to balance the load

among their neighbour list.

Riakiotakis, Ciorba, Andronikos, and Papakonstantinou (2011) proposed a

decentralised approach by forming a virtual ring of nodes; each node only needs to

connect to 2 nodes. The computation of the jobs is pipelined from one node and pass

on to the next node until it reaches back to the first node. In this virtual ring, node

13

Siti Hasm
ah

Digital Library

www.manaraa.com

only exchange load information between the 2 connected nodes and thus, using the

up-to-date load information to chunk the job size. So, a lightly loaded node might take a

bigger chunk as compared to the heavily loaded nodes. This approach is able to handle

application with dependent tasks.

Several studies by (Lu et al., 2006; Lu & Zomaya, 2007; Lu, Subrata, & Zomaya,

2007) have presented a distributed system model which the construction of neighbour

list based on the nodes that are relatively near to each other in terms of network delay.

Lu et al. have determined that the acceptable network delay between a pair of nodes

should not be not more than 1.5 times from the nearest node. For example, assume that

there are N total number of nodes in the system, for each node nu sort all the nodes by

transfer delay in an ascending order and insert those nodes which their transfer delay

is less than 1.5 times from n,. By this way, the load balancing algorithm can assure

that during an event of load imbalance, the time taken for a job to transfer from an

overloaded to lightly loaded node can be minimised. For instance, a node A considers

node B as neighbour as long as the network delay is within 1.5 times from the nearest

node. As a result, nodes will not have an identical set of neighbours and balance the

load among their neighbours.

Apart from this, a similar approach applied by Nandagopal et al. (2010, 2011)

which is to form the neighbour list based on both computing power and network delay

of a node. Intuitively, instead of having the nodes that are relatively near to be its

neighbour, this approach forms a set of nodes that has higher computing powered. With

regards to this, when a node is overloaded, the load balancing algorithm will make sure

to transfer a job to another node which has higher computing power. Besides that, this

algorithm also assumes that if a job is transferred to the highest computing powered

node, it means that there should not be any other nodes that are capable to execute the

job. As a result, this approach can achieve load balancing with the assumption that the

highest computing powered node will not be overloaded.

14

Siti Hasm
ah

Digital Library

www.manaraa.com

Node A

Node C
Time: 7s
Load: 188

Node D
Time: 5s
Load: 108

Node E
Time: 11s
Load: 112

Node B

Node D
Time: 10s
Load: 98

Node E
Time: 5s
Load: 50

Figure 2.6: Neighbour List for Node A and Node B

2 .2.2 Information Exchange

With regards to the neighbour list proposed by Acker and Kulkarni (2007), the

method they used was periodic information exchange. However, the load information

update interval which depends on the total number of neighbours, varies from node to

node. For example, assuming that 7/ is the total number of neighbours for node i and k

is a default small fixed interval. The update interval is said to be 7)- x k and thus, the

update interval increase as the total number of neighbours increase. As a result, the

overall communication message can be minimised. However, the increasing number

of neighbours for a node may affect the validity of the load information. In order to

minimise this issue, instead of updating all the neighbours’ load information, partial

information exchange method such as mutual information feedback approach can be

used (Lu et al., 2006; Lu & Zomaya, 2007; Nandagopal et al., 2010, 2011).

Lu et al. (2006) mentioned that mutual information feedback can minimise

the overall communication messages as compared to the traditional approach that

requests load information periodically. The approach transfers load information along

with a job transfer in order to minimise the network traffic. Moreover, since in a

decentralised model, each node maintains its own neighbour list and thus, some of the

f5

Siti Hasm
ah

Digital Library

www.manaraa.com

load information about the neighbour will be shared to the receiver too. Take Fig. 2.6

as an example of neighbour list for node A and B, when node A transfers job to node B,

the information exchange process will piggyback the load information of A and some

nodes from its neighbour list, onto the job transfer message. In response to node A,

node B in return will reply with a job acknowledgement message and piggyback some

neighbours onto the message. The criteria for updating the neighbour list upon receiving

the message from the sender arc: 1) whether if such node exists in the neighbour list

of the receiver, and 2) comparing the timestamps of the load information. From Fig.

2.6, assuming that all information of the neighbours in node A arc shared to node B,

and as a result, node B will ignore the updates of node C and D. This is because node

C is not the neighbour of node B and the load information of node D is up-to-date

as compared to the one node A had. Similarly, this approach has been employed by

Nandagopal et al. (2010, 2011) and based on their construction of neighbour list as

explained in section 2 .2 .1, some nodes in distributed system will result in an empty

neighbour list. In particular', the node with the highest computing power. Santana-

Santana, Castro-Garcia, Aguilar-Cornejo, and Roman-Alonso (2010) presented another

partial information management technique that incorporated bidding policy to populate

the empty list with those non-empty list. Whenever a node has an empty list, it will

start sending request to other nodes that has the information.

Plentz, Montez, and de Oliveira (2008, 2011) have developed a prediction

mechanism called Available Slack (AS) to predict the response time of the distributed

threads. They proposed a probabilistic method which allows them to estimate the

response time of the distributed threads. Rao and Huh (2008) presented an adaptive

scheduling that predicts a run-time of a task in a targeted Grid without actually submit

the job to the Grid. In OS level, Beltran, Guzman, and Bosque (2008) have presented

prediction algorithm that uses the current system state information gathered from their

monitoring tool to assign task to the CPU. Yang, Foster, and Schopf (2003); Wu,

Hwang, Yuan, and Zheng (2010) have incorporated the use of prediction algorithm

in a distributed system. Some authors incorporate the game theory approach in load

balancing algorithm to predict performance (Subrata, Zomaya, & Landfeldt, 2008;

16

Siti Hasm
ah

Digital Library

www.manaraa.com

Grosu, Chronopoulos, & Leung, 2008; Penmatsa & Chronopoulos, 2011). Dong, Li,

Wu, Xiao, and Ruan (2012) demonstrated an adaptive load information exchange,

which is to prevent frequent load information exchange, and a prediction of workload to

minimise the communication messages. A prediction algorithm learns the behaviour of

the load of a given node. Given enough historical data, the prediction algorithm is able

to predict what will be the workload in the near future. The number of historical data

used is called as the window size. In general, one of the strategies of load prediction

is self-correcting the average load value, which is known as homeostatic prediction.

With regards to this approach, it depends on the current load value and assumed that, if

the current load value as compared to average historical load value of window sized N

decreases, then the predicted load will be decreased as well. The same case is applied

if the current load value increases. The second prediction approach is known as the

tendency-based pridiction which is predicts the future load according to the tendency

of the time series change. For instance, if the current load value as compared to the

previous load value increases, then the tendency will likely to increase, which is the

next predicted load value will increase. As for the case where the tendency decreases,

the predicted value will be decreased.

17

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER3

METHODOLOGY

This chapter describes the tools and methods that arc used in this thesis. In

section 3.1, the research tools that are used in this research are presented, follow by

a study on the significant impact of workload variation towards the performances of

distributed system in section 3.2. To study the performances of distributed system,

a structured distributed system, namely a tree-based distributed system, is used and

together with the use of n computation as the task to be executed. From the study of

the performances of distributed system, the importance of load balancing is described.

Finally, in section 3.3 describes the proposed dynamic load balancing algorithm, namely

HNSA that improves the SIDDLB approach proposed by Nandagopal et al. (2011).

3.1 Network Simulator

3.1.1 OMNeT++

Network
Simple modules

Compound module

Figure 3.1: OMNeT++ Simulation Model

Throughout this research, the network simulator used was based on the OMNeT++

simulation library and framework. OMNeT++ is an open source, extensible, modular,

component-based C++ simulation library and framework (Varga & Hornig, 2008). Gen­

erally, it is composed of 2 types of modules, which are, simple module and compound

module. Simple module is also known as the active module which is where the logic

18

Siti Hasm
ah

Digital Library

www.manaraa.com

of the module is defined. On the other hand, a compound module is made up of 1 or

more modules of any type with unlimited number of hierarchy levels. There is another

module known as a network module which is can be categorised as a compound module.

The difference between a network module and a compound module is that a network

module is the final module defined for a simulator program. Fig. 3.1. illustrates the

general structure of a network simulator using the OMNeT++ simulation library and

framework. Modules can be linked together and communicate through message passing.

Since OMNeT++ is modular based, it provides opportunity to build an extension on

top of the OMNeT++ simulation library. The following section describes the extension

library that is used in this thesis to accomplish the simulation.

3.1.2 OverSim

Tier 3

Tier 2

XML-RPC Real App Gaming
Interface J*—“ Connection n App

P 2 P N S

f
Tier 1

KBR
TeslApp

D H T - R F C " feTOftrce

DHT

i

f—
SimMud

t
i3 Scribe

-± = ±
Application

KFH iniArta.'M ,(«4 Coflwem API)
Neighbor

C a c h e
/SjV ivaldi

• 1_ j : - t
 M M O d 'A I M i ly n lv .

Structured
Overlays

Unstructured MMOG ALM
O verlays Protocols Prats.

| | W , I ItHnUWBRecursive
Strapping Source rculing

Gana'ic
lockup class

Overlay

RPC
handling

V isualization

UDP
m&rtiiw

Underlay Syrtlhclic Real network Packet
co ordinaries connection parser

Simple S in g le Hosl

C h u m G en erafo r(s)

I
Configurator

Visualization

Merging
Partitioning

Global
Observer

N ode List

Statistics

Parameters

Trace
Manager

Figure 3.2: OverSim Framework Model

OverSim is an overlay and peer-to-peer (P2P) open source network simulation

framework built on top of OMNeT++ simulation library (Baumgart, Heep, & Krause,

2007). It consists of the modules from the underlying network to the application

19

Siti Hasm
ah

Digital Library

www.manaraa.com

layer which has reduced the tasks for constructing a network simulator. Additionally,

OverSim has provided structured P2P models and unstructured P2P systems protocols.

An example of structured P2P model is Chord and unstructured is GIA.

Fig. 3.2. illustrates the structure of OverSim framework. The OverSim frame­

work can be categorised into 3 different layers: underlay, overlay and application layer.

The underlay layer consists of the network medium and handles all communication

messages. Overlay layer sitting on top of the underlay layer visualises the network

topologies such as a tree network. Each overlay node has an application running and

the application is defined in the application layer of the OverSim framework.

3.2 The Impact of Different Sizes of Workloads

Distributed computing is a form of loosely-coupled parallel computing where

by, multiple connected computing nodes work together and form into a single virtual

supercomputer to achieve a common goal in a distributed system. Distributed system

which often consists of heterogeneous nodes which are differ in terms of their computing

capability such as the processing power and memory storage. Due to the heterogeneity

of nodes, nodes can fall into either one of these states: idle, lightly loaded or heavily

loaded. The load of a node depends on its computing capability. For example, if a node

is said to be able to execute N number of jobs at a time, the maximum load will be N.

So, if the total number of jobs being executed and waiting is less than N, the node is said

to be lightly loaded. Whereas, when N is 0, the node is said to be idle. As for another

possible state, heavily loaded, is when the total jobs being queued and executing arc

more than N number of jobs. In distributed system, when there are nodes fall in these

states at the same time, the system is considered as not fully utilising its resources. As a

result, increase in the response time of the task, that is the time needed to complete the

task. While having jobs queueing at the heavily loaded nodes, they can be executing

at either the idle or the lightly loaded nodes. This section describes the system model

to be used to analyse the study of the impact of different sizes of workload towards

the distributed system and the method to measure the system performance. Besides

that, the set-up of several scenarios are described, to study and measure the significant

20

Siti Hasm
ah

Digital Library

www.manaraa.com

impact. To carry out the simulation which can be partitioned into smaller pieces, the

computation of the value n is used and explained.

3.2.1 Distributed System Model

Super
processor

V £0 Processors j

Master
processor

Superb
processor

Super
processor

Super i d
processor 3

Super
. processor . y . .lib

V 20 Processors »

Figure 3.3: Tree-based Distributed System Model

The balancing of workloads between nodes is an important factor to be taken

into consideration, and therefore in this experiment a structured tree-based distributed

system is introduced as illustrated in 3.3. In other words, the changes in computational

behaviour will affect the system’s response time. In such cases, some nodes may have

more jobs to execute as compared to other nodes in the system which have little or no

jobs. The imbalance of workloads between nodes implies that the initial partitioning of

the workload is no longer acceptable. It is thus imperative that the distributed system

able to detect the amount of work to be assigned to each node should be balanced at run­

time in order to increase utilisation of resources and improve the overall performances.

To show and study the effects of imbalance node towards the significant impact on

the overall performance in a distributed computational environment, a simulation of

computational n value will be conducted.

Fig. 3.3. illustrates a structured tree-based distributed system which composed

of the main task distributor labelled as Master Processor (MP), 5 Super Processors (SPs)

21

Siti Hasm
ah

Digital Library

www.manaraa.com

which act as a cluster manager and 20 Processors (Ps) under each SP that runs the same

application. In a tree-based distributed system, MP initiates a task and partition it into

smaller pieces in order to distribute to its 5 SPs. SP will further split the receiving piece

of task into smaller pieces so that it can be concurrently executed at its Ps. In other

words, a computational task will be splited from a node into several smaller portions

until each independent job reaches to the leaf nodes to execute concurrently. With

regards to such computational task that is able to divide the task into smaller pieces, the

computation of n is used.

To evaluate the imbalance of workloads, there arc two simulation models,

namely Single Processor and Distributed Processors. The Single Processor involves

only 1 node to execute the computation task for several iterations. Distributed Processors

simulates a computational task for several iterations in a distributed computing environ­

ment as illustrated in Fig. 3.3. Both simulation models will simulate the computation

of n value at 6 different millionth number of intervals (i.e. 100, 200, 400, 600, 800 and

1000 million number of intervals). Each interval is executed for 11 iterations in order

to obtain the average result. The usage of various number of intervals is described in

section 3.2.2. The Single Processor simulation is to study and compare the paralleli-

sation performance of Distributed Processors simulation. In Distributed Processors

simulation, various scenarios of workloads listed in Table 3.1 has been assigned to each

SP to analyse the impact towards the response time. Response time is the measurement

of the total time taken for a task upon it is created by MP until the final answer is

formulated. In other words, response time is the time required to compute a task in

a distributed computing environment which takes waiting time and execution time of

each node into account. Therefore, in order to study the impact of workload imbalance,

the response time will be measured. To further analyse the response time, the measure­

ment of waiting time and execution time of each node will be conducted to investigate

how much time has a node been waited until its turn to be executed and what is the

actual computing time taken by each node to complete its portion of task. The main

objective of the various scenarios listed in Table 3.1 is to show that an optimal workload

distribution yields better response time as compared to those unbalanced workload

22

Siti Hasm
ah

Digital Library

www.manaraa.com

distribution. The most optimal workload distribution in Table 3.1 is Scenario 1, which

evenly distribute workloads across each SP. Eventually, when it comes to Scenario 6,

the workload distribution is concentrated more on one of the SP.

Table 3.1: Scenarios of Workload Assignment to SP

Scenario Workload assign to each SP
SP1 SP2 SP3 SP4 SP5

1 20% 20% 20% 20% 20%
2 30% 20% 20% 20% 10%
3 30% 30% 20% 10% 10%
4 40% 30% 10% 10% 10%
5 50% 20% 10% 10% 10%
6 60% 10% 10% 10% 10%

3.2.2 Computation n by Numerical Integration

a i)

The value of n can be calculated by formulating the area under the graph of

equation (3.1) from the domain of 0 to 1 or one can simply write it in the form of an

integral equation (3.2). Fig. 3.4 illustrates the graphical representation of the graph

/(*)•

5

Figure 3.4: Visual Representation of Function f {x)

23

Siti Hasm
ah

Digital Library

www.manaraa.com

In order to compute the area under the graph of (3.1) as illustrated in Fig. 3.4,

the domain of the equation (3.1) is break into multiple smaller intervals then, the area of

each interval is summed. The more intervals between the domain of (3.1) (i.e. from 0 to

1), the more precise is the value of n, leading to more computing resources to compute.

The area of each interval is computed by multiplying the width and the height of each

interval. The width of each interval can be obtained by dividing the size of the domain

(i.e. 1), over the total number of intervals. The height of each interval is calculated by

applying the midpoint value of an interval into function (3.1). This technique is also

known as the midpoint approximation technique. As a conclusion, the computation of

n numerical integration is used in this experiment is mainly due to that i) it can break

in to multiple smaller pieces, ii) each piece can be computed independently and thus, it

is possible to perform parallel processing, and Hi) it requires more computing power as

the number of interval increase.

3.3 Heuristic Neighbour Selection Algorithm

The previous section shows the importance of workload distribution in a struc­

tured network. This section, the problem is described in a heterogeneous environment,

whereby there is no structured network. In a heterogeneous computing environment,

nodes are geographically dispersed and vary according to their hardware specification

which may cause load imbalance between nodes. Load imbalance between nodes are

very likely to occur as compared to structured network described earlier. The load

imbalance between nodes in a distributed system can lead to performance degradation.

This section describes the proposed load balancing algorithm, HNSA enhanced from

SIDDLB approach. HNSA is a decentralised dynamic load balancing algorithm where

the decision of job distribution is based on the current state information of the system.

Besides that, with regards to the decentralised approach, the job distribution is formu­

lated by several load balancers. Lu et al. (2006); Nandagopal et al. (2010, 2011) have

shown that the decentralised approach can prevent the overwhelming of communication

messages at a single load balancer (centralised) that could lead to single point of failure

as the system size increase. On the other hand, the trade-off by using decentralised

approach is the increase of overall communication messages in the system. With regards

24

Siti Hasm
ah

Digital Library

www.manaraa.com

to this, by employing the partial information technique described by Lu et al. (2006);

Nandagopal et al. (2010, 2011) could minimise the overall communication messages.

3.3.1 Load Balancer Model

• User

Computing Nodes

Load Balancer

Job scheduler

Neighbor List

Load monitor

Figure 3.5: Decentralised Dynamic Load Balancing System Model

When there are idle or lightly loaded nodes and overloaded nodes in a distributed

system, the system is not fully utilising its computing capability. Consequently, the

overall response time of jobs in the distributed system increase. The role of a load

balancer is to optimise the utilisation of resources in a distributed system and minimise

the overall response time. Fig. 3.5 illustrates the load balancer model for HNSA that

generally composed of 3 main modules: job scheduler that schedules the arrival jobs,

neighbour list that keeps track of the load information of other load balancers, and

load monitor to monitor the load of its own computing resources. The job scheduler is

where the dynamic load balancing algorithm lives in and it works closely together with

the scheduler. A dynamic load balancing can be explained in four different policies

(Casavant & Kuhl, 1988; Mukhopadhyay et al., 2010): information policy, transfer

policy, location policy and selection policy.

Upon a job arrives to a load balancer, the job scheduler determines an optimal

location for the job to be executed. This decision is coined as the job distribution

decision which is the decision to either schedule the job for local execution or remote

25

Siti Hasm
ah

Digital Library

www.manaraa.com

execution. The formulation of this decision is based on the load status of a load balancer.

Load status determines whether or not a load balancer is lightly or heavily loaded. If a

load balancer is lightly loaded, it is considered as being under utilised. Otherwise, the

load balancer is considered as overloaded. Knowing the load status, a load balancer-

then, can determine whether or not it has been overloaded or lightly loaded. This

method and process of determining the load status is known as the transfer policy of a

dynamic load balancing algorithm.

In a decentralised dynamic load balancing environment, there arc at least two

or more load balancers arc working together to formulate a job distribution decision.

Hence, the acquisition of load information from other load balancers is an important

factor to determine the load status of one load balancer. This is where the information

policy comes along. It mainly outlines i) what are the information that are required to

formulate the load status of one load balancer, and ii) how to obtain such information.

Besides obtaining the load information, determining who are the neighbours and how

to obtain their load information will also affect the formulation of the decision. The

formation of neighbours and the method to obtain their load information are explained

further in section 3.3.2.

After the load status of a load balancer has been identified as heavily loaded, a

node from the neighbour list will be selected to relief some of its jobs. This is where the

location policy of a dynamic load balancing algorithm determines which node should

be selected to execute the job. After a neighbour has been selected, the overloaded load

balancer will select a job for remote execution. The process for a load balancer based

to select a job for transfer it to the designated node is written in the selection policy.

Fig. 3.6 illustrates the general flow of the system and the usage of these policies in a

dynamic load balancing algorithm.

3.3.1 (a) Notations

This following describes some of the common notations used throughout this

thesis to determine the proposed HNSA:

26

Siti Hasm
ah

Digital Library

www.manaraa.com

• Let N be the set of all nodes

• Let J be the set of all jobs

• Let Nborj C N be the set of neighbours for node i

• Let NborSecondi C N be the secondary set of neighbours for node i

• Let PWDj be the computing power of node i

• Let A, be the average job arrival rate of node i

• Let /3 be the load tolerance level

Start

overloaded?
noyes

End

Enqueue to
the job queue

Transfer the job to the
selected neighbour

Select a job from the
job queue based on
the selection policy

Get the load sta­
tus as defined in

information policy

Get a node from
neighbour list based

on the location policy

Get overloaded
threshold limit
determined by
transfer policy

Figure 3.6: General Flow of a Load Balancing Algorithm

27

Siti Hasm
ah

Digital Library

www.manaraa.com

Algorithm 1 Information Update Process, UpdateNbor
Inputs:

1 r E N - the receiver
2 s E N - th e sender
3 nodess C N - set of nodes received from load balancer s

Steps:
l L E- (Nborr U NborSecondf) + r
2 for all a E nodesr and a e L do
3 if s.timea > r.timea then
4 r.loada e - s.timea
5 r.timea e- s .timea
6 end if
7 end for

Figure 3.7: Information Update Process Algorithm

3.3.2 Information Policy

Load information sharing is an important process in dynamic load balancing

algorithm, in which a load balancer needs the information to formulate the job distribu­

tion decision. Throughout this research, the properties of load information contained by

each load balancer are notated as follows, "in E N:

• loadn - The load index of node n which describes as the time required to complete

all jobs in the job queue of node n.

• time„ - The local time of node n which is the last updated time of the load index,

loadn.

Hence, the neighbour list of a load balancer would contain these information regarding

the other load balancers, to formulate the job distribution decision. This list needs to be

constantly updated in order to increase the accuracy of the job distribution. A technique

named mutual information feedback is used to update the list, which allows a load

balancer to share some of its neighbours’ load information with another load balancer

(Nandagopal et al., 2010, 2011) by piggybacking onto a job transfer message. That

28

Siti Hasm
ah

Digital Library

www.manaraa.com

is, the load information exchange is take place at the event of a job transfer from one

load balancer to another. Before a load balancer can transfers a job to its neighbour,

it will piggyback the load information of itself and at least one or a small amount of

its neighbours to the job transfer message. At the receiver side, upon it receives the

job transfer message, it acknowledges the sender by with the same action. While a

load balancer is updating its neighbour list, it will only select those neighbours that

found in its list to update, and provided the timen value is higher than the one in its list.

If a node’s load information is not found in ones neighbour list, it will not be added

into its neighbour list, instead the load balancer will have to discard that particular

load information. This is to ensure that the neighbour list consists of those nodes that

of higher computing capabilities. The Algorithm 1 outlined in Fig. 3.7 is the steps

for a load balancer to update its neighbour list only if there is a matched of similar

neighbours with the latest load information. In order to identify which is the latest load

information of a load balancer, timen is used to determine when was the last update

time of the loadn of a neighbour n. Furthermore, this information exchange process will

only take place during a job transfer, that is also upon the load imbalance of a system.

3.3.3 Neighbour List

The construction of neighbour list is based on reliable nodes, which is similar

to the neighbour construction model proposed by (Nandagopal et al., 2011, 2010). The

list of reliable nodes refers to the list that only contains nodes which arc likely to be

able to accept and compute any jobs sent from the sender. So, the sender do not need to

collect and store the load information of the nodes which are unlikely to accept the jobs

from the sender.

Figure 3.8: Scenario of a Node With an Empty Neighbour List

29

Siti Hasm
ah

Digital Library

www.manaraa.com

During the system start-up, each load balancer will construct their own neigh­

bour list based on two criteria: i) computing power or computing capabilities (these

2 terms will be used interchangeably), and ii) network delay . In this research study,

the network delay will be assumed to be minimal or negligible, and hence, it will

not be taken into account. As the end result, the neighbour list of a node A, would

consists of those load balancers with their computing power (or computing capability)

relatively high as compared to node A. By applying this construction model throughout

the system, the load balancer with the highest computing power eventually does not

have any neighbours. Fig. 3.8. illustrates such scenario where the load balancers arc

represented in circles and the number in the middle represents their computing power;

the smaller numbered circle means having lower computing power as compared to

a higher numbered circle. Besides that, the directed arrows pointing from a node A

towards other nodes illustrate the (has a) relationship between node A and the other

nodes, but not vice versa. For example, the neighbours of node 5 are nodes 6, 7, and 9.

But, the neighbour of node 6 does not include node 5. The Fig. 3.8 shows that node 9

does not have any neighbours associate with it because it has the highest computing

power as compared to the others.

As far the reliable nodes arc concerned, the nodes received from the load

information exchange as explained in the previous section, cannot be simply appended

into the list if it is not found. Instead, it will be discarded. Again, the neighbour list in

the highest computing powered nodes will be still remain empty, and it cannot offload

jobs when it is overloaded.

3.3.4 Secondary Neighbour List

In order to solve the empty neighbour list, specifically the highest computing

powered node, a secondary neighbour list, NborSecond, is then introduced to takeover

the absence of the main neighbour list. The reason to have another secondary list

for such nodes is to prevent them from being overloaded. The 2 main differences of

between the main neighbour list and the secondary neighbour list arc that: i) the

secondary list able consists of unreliable load balancers, that is, the neighbour list of

30

Siti Hasm
ah

Digital Library

www.manaraa.com

a node A might include node B of which its computing power is relatively lower as

compared to node A, and ii) the dynamic construction of a neighbour list at the runtime

of the system.

Whenever a load balancer with the secondary neighbour list receives a job

transfer request, from the mutual information feedback, a load balancer will include the

load information of the sender, as well as some of the neighbours from the sender to its

secondary neighbour list. If a neighbour has already exists in the secondary neighbour

list, then the load information of regarding the neighbour will be updated. However,

there are times when the neighbours in secondary neighbour list are not up-to-date and

thus, the load balancer will formulate the job distribution decision based on an outdated

load information. Since the information exchange process is bind together with the job

transfer and such load balancer cannot simply transfer jobs to unreliable load balancers,

the information update process cannot take place.

3.3.5 Load Prediction

loadi + (^n x Largest! J))
Fi = ------------^ -----------------------Dj (3.3)

PWDi K

The following describes the notations used in equation 3.3:

• Let Fj be the estimated time to complete all jobs queued in node i

• Let J be the set of all jobs

• Let loadi be the load of node i (i.e. the time needed to complete all jobs at node i)

• Let Di be the time difference between now and the last recorded time of the

variable loadi of node i

• Let PWDi be the computing power of node i

• Let A, be the average job arrival rate of node i

31

Siti Hasm
ah

Digital Library

www.manaraa.com

• Let Largest(J) be the largest job size in the set of J

In order to overcome the issue encountered in secondary neighbour list, whereby

the formulation of job distribution decision is not optimised, a simple load prediction

method is applied to estimate the current load information of the neighbours in the

list. The load prediction is described in an equation 3.3, Fj, that predicts the loadi for

a neighbour i. The variable l)t in the equation refers to the time elapsed since timeu

which is also known as the time difference between timei and present. Besides that,

A, refers to the average job arrival rate of 100 jobs and Largest(J) refers to the largest

job in the set of J. So, in addition to Algorithm 1, for those load balancers which

their primary neighbour list is empty, they will be using Algorithm 2, load prediction

approach, outlined in Fig. 3.9 to estimate the load of those nodes in secondary neighbour

list upon every job arrival.

Algorithm 2 Load Information Prediction, LoadPrediction
Output: L c N - a set of load balancers with their load information predicted
Inputs:

1 n e N - th e load balancer that is currently executing this algorithm

Steps:
l if Nborn = 0 and NborSecond„ =/=■ 0 then
2 for all c E NborSecondn do
3 loadc E- Fc from equation 3.3
4 timec E- current time
5 end for
6 return NborSecond„
7 end if
8 return Nborn

Figure 3.9: Algorithm For The Prediction of The Secondary Neighbour List

32

Siti Hasm
ah

Digital Library

www.manaraa.com

3.3.6 Transfer Policy
Algorithm 3 Heuristic Neighbour Selection Algorithm (HNSA), Schedule
Output: min E N - the least loaded node
Inputs:

1 n E N - the load balancer that is currently executing this algorithm
2 j E J - the arrival job

Steps:
l if Nbor„ 7̂ 0 then
2 3min E Nborn, where min possesses the least load
3 if loadn > loadmin + /3 then
4 return min
5 end if
6 else
7 L E- LoadPrediction(n) from algorithm 2
8 3mm G L, where min possesses the least load
9 if loadn > loadmin then

10 return min
11 end if
12 end if
13 return n

Figure 3.10: Algorithm To Select The Optimal Neighbour

Transfer policy outlines the steps to determine the load status of a load balancer

among other load balancers (i.e. overloaded, or lightly loaded). In HNSA, the load

status of a node is determined through a fixed threshold which is by comparing the load

index of itself and its neighbours’ load index that should not exceed the tolerance level

/3. The usage of this approach is similar to SIDDLB approach and it produces a good

result in certain scenarios. This will be further discussed in chapter 4.

On top of that, with regards to the secondary neighbour list, the proposed

approach HNSA has a different method of determining load status for those nodes

which their Nbor is empty. Especially the highest computing powered node. Since

the information exchanged process takes place during a job transfer, the update of

information in the secondary neighbour list is infrequent and hence, these nodes

should not simply transfer to any lower computing powered nodes based on these

load information. Because of this, the load prediction method is used for the secondary

neighbour list to assist the load balancer in determining a more suitable load status.

33

Siti Hasm
ah

Digital Library

www.manaraa.com

If the predicted time value of a neighbour is smaller than the load balancer that

is formulation the decision, the load balancer is considered to be overloaded. That is

because the predicted value also specifies the amount of time required to complete all

jobs in the job queue. The Algorithm 3 depicted in Fig. 3.10 outlines the transfer policy

of the proposed algorithm HNSA which uses 2 different methods of determining the

load status of a load balancer. Furthermore, the Fig. 3.11 illustrates the flow of the

HNSA from receiving new job or job transfer to the end of the scheduling decision.

Start

j originate from
other node? ,

no
yes

Nbor„ = 0 and
NborSecondn = 0 ?

yes

no

End

3 j G J
Arrival of job j

NborSecondn nodes;
Assign NborSecondn

for the first time

3.s' g N, is the sender,
retrieve the piggy­

backed list of neigh­
bours, nodess C N

UpdateNbor(n,s,nodess)
Update Nbor„ or

NborSecondn with
Algorithm 1 in Fig. 3.7

Schedule(nJ)
Determine the load

status and sched­
ule the job j with

Algorithm 3 in Fig. 3.10

Figure 3.11: Process Flow When Job Arrives At Node

34

Siti Hasm
ah

Digital Library

www.manaraa.com

3.3.7 Simulation Model

l +5 +0 +2[

*5+o*ir

_ accessRoutert

I r
1 .1 2 .0 .2 [7]

1 .1 3 .
accessRouter

|
l.lO.O.li trw. 0 .2 [5]

1 ,1 4 ,C 1 2 [9]
.1 4 .0 1 1 accessRouter

apdessRouter[4]

U 3 +0 .2 [3 p c t^ e s

accessRouter[3] 1J.0A
ckboneR

1+6*0*1

«êFJowLer[l]

outer[8]
l+6 *0 +2 [l]

2C2]

1.11.0,2[6]

1 .1 3 .0 .2 [8]

Figure 3.12: Network Diagram of 10 Load Balancers

This thesis focused on the study of the neighbour list, which refers to the

information policy that describes the approach of obtaining load information from

other load balancers, and input into the transfer policy to determine the load status of

other load balancers. To study and measure the performances of the proposed HNSA

method, a simulations study will be conducted to analyse the overall average and the

variation of response time of a job for each load balancer. The results will be compared

against SIDDLB algorithm that is also focusing on the information policy towards load

balancing.

Simulation will be simulated in a network of total 10 load balancers with a

maximum network diameter of 6; i.e., the furthest distance between a 2 load balancers

is at most 6 hops away. Fig. 3.12 illustrates the network of 10 load balancers in this

study. In order to simulate heterogeneity of computing nodes, each load balancer will

be distinguished by their computing power. For simulation purposes, each load balancer

will be identified by a range of identifiers from 1 to 10, where as 1 being the lowest and

10 being the highest computing power. The computing power of a load balancer will be

35

Siti Hasm
ah

Digital Library

www.manaraa.com

measured in terms of job-size per second (Job-size/ sec). That is, given a job of size 10,

it will only need 1 second to compute the job for a node that is 10 job-size per second.

The Table 3.2 depicts the range of load balancers and their computing capabilities used

throughout this simulation study. The variation of computing power in Table 3.2 depicts

the heterogeneity of the distributed system.

Table 3.2: Various Computing Powered Load Balancers

Node ID 1-2 3-5 6 7-8 9-10
Computing Power

(Job-size / sec) 10 20 30 40 50

3.3.7 (a) Job Model

Each of the scenario will execute 10,000 jobs before ending the simulation. The

job model used in this simulation uniformly distribute job size ranging from 20 to 99.

The value of a job size is a natural number greater than zero. Job value represents the

complexity of a job; the greater the job size, the more computing power needed to

compute the job. For example, a job size of 50 will be taking 5v to compute for a node

that is capable of computing at the speed of 50 Job-size/sec. Each job will be created

at any one of the nodes at a time. That means, no jobs will be created to more than 1

node at a time. Furthermore, the arrival time of a job at each node will be based on

Poisson distribution with a mean deviation of 2s.

3.3.7(b) Pour Jobs

There arc various scenarios set-up in this simulation to study and analyse the

algorithm in a heterogeneous environment. In order to simulate an overloaded node,

pour jobs is introduced. Listed in Table 3.3, there are the 4 different scenarios set-up to

simulate overloading nodes of various types of computing powered nodes. Again, the

Node ID depicts the computing power of the given node; i.e. Node ID 1 has relatively

low computing power as compared to Node ID 2. In order to intentionally overload a

node, pour jobs simply create a huge number of jobs at that specific node at an instance

of time. For example, at time t, create 300 jobs for node i. Eventually, the size of

the job queue increases as well as the response time of the jobs in the queue of node

36

Siti Hasm
ah

Digital Library

www.manaraa.com

i. In the third column (Number of Jobs) of Table 3.3, is the number of jobs that will

be created to overload at the designated load balancers which arc listed in the second

column (Node ID). This method of overloading a node is called as pour jobs and will

be used throughout this thesis. Note that in scenario 1, there will be no event of pour

jobs occurred in any of the nodes in the distributed system. This scenario is to analyse

how will the algorithm reacts as there are no pour jobs event occur. As for scenario

2 and 3, the event of pour jobs will occur to the lower computing powered node, and

higher computing powered nodes respectively. These 2 scenarios study how each of

the node reacts when they are overloaded. Finally in scenario 4, both lower and higher

computing nodes will expect a pour jobs event about the same time. In this simulation

study, the event of pour jobs will only take effect after the nodes have created their first

50 jobs.

Table 3.3: Scenarios of Pour Jobs in Various Computing Powered Load Balancers

Scenario Node ID Number of Jobs
1 - -
2 1 300
3 9, and 10 300
4 1,9, and 10 300

37

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER 4

RESULTS AND DISCUSSION

This chapter discusses the results obtained from the simulation studies described

in chapter 3. In section 4.1, the result of the significant impact on various sizes of

workload towards the performances of the distributed system is discussed. This section,

first shows the importance of parallel distributed computing follow by the need of load

balancing in distributed system. Finally, in section 4.2, the results obtained from the

proposed dynamic load balancing algorithm, namely HNSA, is discussed. Furthermore,

this section also discussed how the proposed algorithm can minimise the response time

of a job and also maximise the utilisation of the distributed system.

4.1 Effect of Workload Imbalance

This section discusses the results from the importance of parallel computing and

the impact study of various sizes of workloads towards a distributed system presented

in section 3.2. In this study, there were two experiments simulated: i) Single Processor

to show the importance of parallel computing, and ii) Distributed Processors to show

the impact of different sizes of workloads towards the parallel distributed system. In

both simulations, the computation of the value pi{n) was used as the computing task

to be computed. The response time was measured in both simulations in order to

measure and analyse the total time taken to compute the value piiji). With regards to

Distributed Processors, the waiting time of SP and MP were also measured to study

how much the time were spent for them whilst waiting for the other nodes to complete

the computation of the value piiji). Besides that, each of the computing time taken by

P to compute its own portion of task were measured to analyse the actual time spent.

Several scenarios have been simulated by varying the different amount of workload

to each SP. Furthermore, the results of these scenarios were presented to discuss the

importance of load balancing.

38

Siti Hasm
ah

Digital Library

www.manaraa.com

4.1.1 Single Processor Simulation

Computation Time for Single Processor
50

100 200 400 600 800 1000
Number of intervals (millions)

resp. time

Figure 4.1: Overall Computation Time for Single Processor

In this simulation, the importance of parallel computing has been identified.

Fig. 4.1, illustrates the increasing need of computing time as the number of intervals

increases. The result has shown that the increasing number of intervals between the

domain of 0 and 1 requires more computing time to execute the value pi(it). This

is because the accuracy of the value pi in) improves proportionally to the number

of intervals between 0 and 1, and as well as the computing time. However, parallel

computing can be applied to speed up the process. In the Distributed Processor

simulation where distributed computing environment is set-up to perform parallel

computing task, the overall results obtained from it was less than 5s to compute the

value pi(n). However, in a distributed system, the load of nodes arc changing all the

time and it may affect the response time and eventually the performances of the system.

The next section discussed the significant impacts for nodes that have various amount

of workload towards the performance of a distributed system.

39

Siti Hasm
ah

Digital Library

www.manaraa.com

4.1.2 Distributed Processor Simulation

The main focus of this Distributed Processor simulation to analyse the impact of

different sizes of workloads. In Table 3.1, the assignments of workloads for 6 scenarios

was used to set-up this simulation and Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, and

Fig. 4.7 show the results from those 6 scenarios described in Table 3.1. The results are

denoted as follows:

• resp. time - response time

• MAX(COMP) - maximum computation time

• MIN(COMP) - minimum computation time

• MAX(COMM) - maximum communication time

• MIN(COMM) - maximum communication time

• MP AVG(WAIT) - average waiting time of MP

• SP AVG(WAIT) - average waiting time of SP

The results illustrate that in all the scenarios and for the selected workload sizes

(computation using 100,000,000 to 1,000,000,000 intervals), the overall response time

is in the region of 2.5,s± 0.5,v. This is a far-off from the theoretical speed-up of using

100 times more processors. The speed-up obtained from the scenarios ranges from

about 2.5x to 15x.

By varying the distribution of workloads to the SPs based on scenario 2, 3, 4,

5 and 6, the theoretical speed-up that is expected will be governed by the SP with the

heaviest workload. It is observed that the maximum computation time for processor,

MAX(COMP) not only increase with the number of intervals used to compute the value

of but also increases with each scenarios. This is because the SP with the heaviest

workload in each of the scenario increases from 20% (scenario 1), 30% (scenario 2 and

40

Siti Hasm
ah

Digital Library

www.manaraa.com

3), 40% (scenario 4), 50% (scenario 5) to 60% (scenario 6). However, it is also observed

from the simulation results obtained, the MAX(COMP) is a minor contributor to the

overall response time of each scenarios. From the results, it is evident that the overheads

from the communication and the waiting times at the MP and SPs significantly impact

the scalability of the distributed system. The waiting times on SPs and MP is due to

having to wait for the latest (slowest) nodes and SPs to send back their computed results

respectively.

3.5

3

2.5

GA 2
QJ
£4-» 1.5

1

0.5

0

Scenario 1

*
*-

*

*

100 200 400 600 800
Number of intervals (millions)

1000

SP AVG(WAtT)
MP AVG(WArr)

resp. time

MIN(COMM) - X -

MAX(COMM)
MIN(COMP)

MAX(COMP) -■

Figure 4.2: Overall Computation time of Scenario 1 for Distributed Processor

41

Siti Hasm
ah

Digital Library

www.manaraa.com

tim
e

(s)

tim
e

(s
)

Scenario 2
3.5

3

2.5

2

1.5

1

0.5

0
100 200 400 600 800 1000

Number of intervals (millions)

SP AVG(W AtT) MIN(COMM) --X-- MAX(COMP)
MP AVG(WAIT) MAX(COMM) X-

resp. time MIN(COMP) ■■ □ ■■

Figure 4.3: Overall Computation Time of Scenario 2 for Distributed Processor

3.5

3

2.5

2

1.5

1

0.5

0
100 200 400 600 800 1000

Number of intervals (millions)

SPA VG (W AIT) MIN(COMM) --X-- MAX(COMP)
MP AVG(W AtT) MAX(COMM)

resp. time MIN(COMP) ■■ E ■■

Figure 4.4: Overall Computation Time of Scenario 3 for Distributed Processor

Scenario 3

-*■ ■X * ■ I -

■E
-X -

42

Siti Hasm
ah

Digital Library

www.manaraa.com

tim
e

(s)

tim
e

(s
)

3.5

3

2.5

2

1.5

1

0.5

0
100 200 400 600 800 1000

Number of intervals (millions)

SP AVG(W AtT) MIN(COMM) --X-- MAX(COMP)
MP AVG(WAIT) MAX(COMM)

resp. time MIN(COMP) ■■ □ ■■

Figure 4.5: Overall Computation Time of Scenario 4 for Distributed Processor

3.5

3

2.5

2

1.5

1

0.5

0
100 200 400 600 800 1000

Number of intervals (millions)

SPA VG (W AIT) MIN(COMM) --X-- MAX(COMP)
MP AVG(W AtT) MAX(COMM)

resp. time MIN(COMP) ■■ E ■■

Figure 4.6: Overall Computation Time of Scenario 5 for Distributed Processor

Scenario 5

Scenario 4

* ■X * m :::: *

t - -X -

43

Siti Hasm
ah

Digital Library

www.manaraa.com

3.5

3

2.5

2

1.5

1

0.5

0
100 200 400 600 800 1000

Number of intervals (millions)

SP AVG(W AtT) MIN(COMM) MAX(COMP)
MP AVG(WAIT) MAX(COMM)

resp. time MIN(COMP) ■■ □ ■■

Figure 4.7: Overall Computation Time of Scenario 6 for Distributed Processor

Scenario 6

44

Siti Hasm
ah

Digital Library

www.manaraa.com

4.2 Decentralised Dynamic Load Balancing

4.2.1 Effect on Response Time

350

300

250

— 200
0

1 150

100

50

Figure 4.8: Overall Average Response Time for Each Scenario

The performance of the proposed approach, HNSA, was evaluated using the

simulation set-up described in section 3.3.7 and it was compared against the method

proposed by Nandagopal et al. (2010, 2011) SIDDLB. In order to analyse the perfor­

mance of the load balancing algorithm, the average response time for each node was

recorded. The response time is the time taken for a node to complete a single job,

whereas the average response time of a node is the average of all the response time of

the jobs computed in the node. In addition to that, the variation of response time for

each job was also taken into account and thus, standard deviation of the response time

is used. The smaller the value of the standard deviation, the better the load balancing

algorithm reacts to the distributed system. Fig. 4.12 and Table 4.1 show the overall

average response time and standard deviation for each scenario. Fig. 4.8, 4.9, 4.10, and

4.11 show the average response time of each job for each node from the 4 scenarios

described in Table 3.3.

Overall average response time

HNSA i--------1
SIDDLB i--------1

S1 S2 S3 S4
Scenario

45

Siti Hasm
ah

Digital Library

www.manaraa.com

Table 4.1: Overall Average Response Time

Scenario HNSA response time (.v) SIDDLB res ponse time (.v)
avg. stdev. avg. stdev.

SI 29.63 0.75 32.14 0.91
S2 102.89 3.65 107.27 1.68
S3 176.69 10.72 189.76 21.03
S4 245.38 18.29 239.94 22.95

350

300

250

S 200

.1 150
- 4— '

100

50

0

In Fig. 4.8, the overall response time for all of the scenarios show some improve­

ment over SIDDLB except for scenario 4 which result in a small rise in the average

response time. With regards to scenario 4, where the event of pour jobs take place at the

lowest and highest computing powered nodes, the difference of average response time

of both approaches is only 5.44,v, which means SIDDLB is about 2% faster than HNSA.

However, the result from the standard deviation shows that the variation of jobs in SID­

DLB is about 20% higher as compared to HNSA. This means that the overall decision

of distributing jobs across nodes in this scenario for HNSA is still better. Besides this

scenario, in scenario 2, it is noted that the althought the average response time HNSA

performs better than SIDDLB, the variation of jobs results in around 50% more than

Average response time for scenario 1

:HNSA
SIDDLB Ionova

1 2 3 4 5 6 7 8 9 10
Node ID

Figure 4.9: Average Response Time for Scenario 1

46

Siti Hasm
ah

Digital Library

www.manaraa.com

SIDDLB. This is because, in this scenario, the advantage of SIDDLB is to be able to

re-distribute jobs from the overloaded nodes, which have higher computing powered

nodes in their neighbour list. So, whenever the a node is overloaded, it will transfer a

job to a higher computing powered node and eventually, the highest computing powered

node has to accept the job. In contrast to SIDDLB, HNSA gives the highest comput­

ing powered node the chance to formulate job distribution decision. For example, in

scenario 3, whereby the pour jobs event occurred at the highest computing powered

node, both the average response time and variation of jobs in HNSA result better than

SIDDLB.

Looking at scenario 1 in detail, in which the event of pour jobs did not take

place, the result shows that the standard deviation of response time for both approaches

arc relatively small, generally less than fv. Specifically, the standard deviation of

response time of each job for HNSA approach and SIDDLB approach are 0.7.% and

0.91,v respectively. There was only slight improvement over SIDDLB approach which

can be considered as insignificant. In fact, SIDDLB approach itself should be able to

handle the normal situation. Although from Fig. 4.9, each of the node using HNSA

approach results in lower average response time. The purpose of this scenario is to

analyse whether if the HNSA is also able to fairly distribute the jobs across the nodes.

As a conclusion for this scenario, both approaches were able to balance the load among

each other.

In scenario 2, the event of pour jobs took place at the lowest computing power

node, specifically the Node ID 1, with an additional of 300 jobs. From the result

illustrated in Fig. 4.10, for each node that used HNSA approach has resulted in lower

average response time as compared to SIDDLB. However, the overall average response

time from both approaches has rise. This is because of the additional 300 jobs created

at an instance of time. During that time, for both approaches, Node ID 1 forwards some

of the jobs to higher computing power nodes and eventually builds up their queue. This

eventually will affect the response time of other nodes as well, thus, the increase in an

overall response time. Note that there is a slight drop of average response time in Node

47

Siti Hasm
ah

Digital Library

www.manaraa.com

Average response time for scenario 2

350

300

250

S 200
o
E 150

100

50

0

ID 1 for HNSA. Due to the jobs that were transferred up to highest computing powered

node, such node in HNSA uses the secondary neighbour list to predict other neighbours

load and formulate job distribution decision based on such information. Hence, due to

the load prediction method which highly depends the timen of a node n to predict the

load,,, has probably predicted that Node ID 1 is overloaded.

In scenario 3, instead of overloading the lowest computing powered node, the

pour jobs event occurred at Node ID 9 and 10, which both of them have the highest

computing powered. The objective of this scenario is to verify that in HNSA approach,

it is able to predict the load of other lower computing powered nodes and able to

re-distribute the job to other feasible node. The result shows that the standard deviation

of response time for HNSA approach and SIDDLB approach are 10.72^ and 21.03^

accordingly. HNSA approach has shown an 50% of improvement against SIDDLB in

terms of variation of response time. This has shown that in SIDDLB approach, although

higher computing power nodes arc overloaded, they will still accept any jobs that

arc from lower computing power nodes. This is because in SIDDLB approach, each

HNSA i 1
SIDDLB

1 1
--

I 1
[7\\j |

1
FI |

1 1 l 1 | 1 1 l l
A A VW 1 1

1 2 3 4 5 6 7 8 9 10
Node ID

Figure 4.10: Average Response Time for Scenario 2

48

Siti Hasm
ah

Digital Library

www.manaraa.com

Average response time for scenario 3

350

300

250

S 200
o
E 150

100

50

0

node will only consists of higher computing powered nodes. Hence, if a job has been

escalated until the Node ID 9 or 10, such nodes will assume that there arc no other

nodes in the distributed system can execute this faster than they do. On the other hand,

in HNSA approach, it consists of another secondary neighbour list for nodes that do not

have the primary neighbour list. This list is mainly to learn the existence of other nodes

in the system and predict their loads from time to time. Job will be re-distributed to

lower computing power node if it is predicted to be a feasible node. However, as can be

seen in Node ID 9 and 10, both recorded slightly lower response time than the other

nodes. This is due to the static transfer policy, which does not incorporate threshold

adjustment and result in some unnecessary migration of jobs. Nevertheless, it can still

be concluded that the prediction of load in secondary neighbour list helps to formulate

a better job distribution decision.

Finally, in the last scenario 4, which is to test the awareness of the prediction

algorithm if both lowest and highest computing powered nodes are overloaded, specifi­

cally Node ID 1, 9 and 10. The result of HNSA approach shows that it only lower down

HNSA i 1
SIDDLB tv̂ a-Tsri

1 2 3 4 5 6 7 8 9 10
Node ID

Figure 4.11: Average Response Time for Scenario 3

49

Siti Hasm
ah

Digital Library

www.manaraa.com

Average response time for scenario 4

350

300

250

S 200
o
E 150

100

50

0

the load in Node ID 9 and 10 but not in SIDDLB. Throughout the load from Node ID 1

to 8, HNSA has resulted an increasing average response time. This means that Node ID

9 and 10 were not aware that other nodes in the distributed system is also experiencing

a rise in average response time. This is because during the pour jobs event in Node

ID 9 and 10, the job arrival rate also affect the load prediction algorithm to learn that

the arrival rate of the job has been constantly ()v for over 300 jobs and it did not realise

that Node ID 1 is also encountering pour jobs. On the other hand, for SIDDLB, the

load will only be increasingly rise from Node ID 1 to 10 because the job keeps on

escalating up until it reaches to the highest computing powered node. Nevertheless, the

overall average response time for HNSA as compared to SIDDLB is only 2% difference.

Besides, the variation of response time in HNSA still lower than SIDDLB approach.

HNSA i 1
SIDDLB

1 2 3 4 5 6 7 8 9 10
Node ID

Figure 4.12: Average Response Time for Scenario 4

50

Siti Hasm
ah

Digital Library

www.manaraa.com

4.2.2 Effect on The Number Communication Messages

Total number of communication m essages
30000

CO

O) 25000
CC
CO
CO

E 20000
o

| 15000
13

~Z.
10000

Figure 4.13: The Total Number of Communication Messages

This section disccused about the effect of the number of communication mes­

sages. The communication messages included arc: i) job transfer message, ii) job

acknowledgement message, and iii) job completion message. Both 3 types of communi­

cation message include the piggybacked list of neighbours. It is noted that in Fig. 4.13,

the HNSA has resulted in an increasingly number of communication messages. On the

other hand, SIDDLB has a lower number of communication messages. The SIDDLB is

able to result in such a low communication message is partly due to the total number of

jobs created at each node. Table 4.2 depicts the total number of jobs created throughout

this study include the additional 300 jobs created by pour jobs. So, the number of jobs

in each scenario should be 10,000 in total. Since HNSA allows those nodes that do

not have any neighbours in their primary neighbour list to re-distribute jobs, it should

always result in a higher total number of communication messages because such nodes

are able to formulate the job distribution decision. As for SIDDLB, whenever a job

has arrived at the highest computing powered node, that node has to accept the job

and will not be able to transfer until the completion of the job. Therefore, from S2 to

HNSA — i
SIDDI B » i «

S1 S2 S3 S4
Scenario

51

Siti Hasm
ah

Digital Library

www.manaraa.com

S3, SIDDLB resulted in lower number of communication messages is due to the jobs

created at Node ID 9 and 10 which have an empty neighbour list.

Table 4.2: Total Jobs Created at Each Node

Node ID SI S2 S3 S4
1 1010 1365 924 1290
2 1001 964 920 879
3 1003 963 927 885
4 1018 982 950 907
5 1013 972 928 884
6 990 951 916 879
7 979 942 907 866
8 1012 975 929 884
9 950 916 1273 1238
10 1024 970 1326 1288

52

Siti Hasm
ah

Digital Library

www.manaraa.com

CHAPTER 5

CONCLUSION

In the current distributed parallel computing environment which connects vari­

ous types of computing resources have enabled us to seamlessly access to an unlimited

source of computing power. Often, in a parallel computing paradigm, a task is split

up into smaller pieces and concurrently execute them in multiple computing nodes.

Due to the heterogeneity of computing nodes, evenly splitting a task could decrease the

utilisation of distributed system. The system utilisation decreases when the system load

is imbalance. In other words, there are lightly loaded nodes and heavily loaded nodes at

the same time. Over prolonged period of time, it could affect the system performances

and increase in the response time of a task. This thesis includes the study of the different

sizes of workloads and the impact towards the distributed system. With regards to the

heterogeneity and different sizes of workloads, dynamic load balancing algorithm is

applied to fairly distribute task across computing nodes so that each node would receive

a fair amount of workload. Dynamic load balancing algorithm can be implemented in

either centralised or decentralised approach. In this research, a decentralised approach

has been used so that it can eliminate the bottleneck issue that raised from the centralised

approach. In a decentralised dynamic load balancing algorithm, load balancers use

the current system load state to formulate job distribution decision. Since there is no

centralised load balancer to keep track of other load balancers in the system, each load

balancer has to keep track of their neighbours. This research also includes the study of

the construction of the neighbour list and the method of accessing the load information

of the neighbours.

The first study in this research is regarding the significant impact of different

sizes of workloads towards distributed system. A structured tree-based distributed

system was used to study the impact of different sizes of workloads. Because of a small

changes in a response time of a computing node at the bottom of the tree can easily

53

Siti Hasm
ah

Digital Library

www.manaraa.com

impact the overall response time of a given task. A simulation study has been conducted

by calculating the value pi in). In order to simulate different sizes of workloads, a set

of scenarios has been set-up. Various scenarios ranging from an evenly partitioned load

to different sizes of load has been conducted. This study concluded the importance of

load balancing whereby the scenario with evenly partitioned load has the lowest overall

response time.

The second study presented in this thesis is to analyse the proposed dynamic

load balancing algorithm, HNSA. The goal of a load balancing algorithm is to minimise

the overall response time of a task and at the same time, maximise the utilisation of

distributed system. A decentralised dynamic load balancing algorithm has been chosen

because of various reasons: i) single point of failure experienced by the centralised

approach, and ii) the heterogeneity of computing nodes which leads to the usage of

dynamic load balancing. A dynamic load balancing algorithm can be categorised into

4 different policies: information policy, transfer policy, selection policy , and location

policy. In this study, the focus is on improving the information policy and transfer

policy. The proposed HNSA algorithm which is improvised from the SIDDLB has

been simulated and compared with SIDDLB. Response time and the standard deviation

of response time has been measured. As a result, the proposed HNSA approach is

able to minimise the overall response time as compared to SIDDLB with an increasing

number of communication messages generated. Besides that, the standard deviation

value produced from HNSA is lower as compared to SIDDLB. This means, the proposed

algorithm HNSA has a higher system utilisation as compared to SIDDLB.

This research shows that the proposed algorithm HNSA, able to minimise the

response time and also maximise the system utilisation as compared to SIDDLB. HNSA

focuses mainly on the construction of neighbour list and also the approach of obtaining

the load information of other load balancers. Future work may include the integration

of an adaptive transfer policy so that a dynamic load balancing algorithm can further

optimise the system utilisation.

54

Siti Hasm
ah

Digital Library

www.manaraa.com

5.1 Contributions

This thesis contributes to the area of dynamic load balancing policies. Specifi­

cally, the information policies:

1. Constructed a neighbour list for a node to consists of nodes that are readable; that

is, nodes with relatively higher computing power.

2. Designed a method of updating load information that combines the mutual

information feedback technique and load prediction method, that is based on

statistical response time.

55

Siti Hasm
ah

Digital Library

www.manaraa.com

REFERENCES

[1] Acker, D. S., & Kulkami, S. (2007, May). A dynamic load dispersion algorithm for load-balancing

in a heterogeneous grid system. In Samoff symposium, 2007 IEEE (pp. 1-5).

[2] Ahn, H. C„ Youn, H. Y„ Jeon, K. Y., & Lee, K. S. (2007). Dynamic load balancing for large-

scale distributed system with intelligent fuzzy controller. In IEEE international conference on

information reuse and integration, 2007. iri 2007 (pp. 576-581).

[3] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002, November).

SETI@home: an experiment in public-resource computing. Commun. ACM , 45(11), 56-61.

[4] Antonis, K., Garofalakis, J., Mourtos, I., & Spirakis, P. (2004, January). A hierarchical adaptive

distributed algorithm for load balancing. Journal o f Parallel and. Distributed Computing, 64(1),

151-162.

[5] Barazandeh, I., & Mortazavi, S. S. (2009, December). Two hierarchical dynamic load balancing

algorithms in distributed systems. In Second international conference on computer and electrical

engineering, 2009. ICCEE ’09 (Vol. 1, pp. 516-521).

[6] Barazandeh, I., Mortazavi, S. S., & Rahmani, A.-M. (2009, November). Two new biasing load

balancing algorithms in distributed systems. In First asian Himalayas international conference on

internet, 2009. ah-ici 2009 (pp. 1-5).

[7] Baumgart, I., Heep, B., & Krause, S. (2007, May). OverSim: A flexible overlay network simulation

framework. In IEEE global internet symposium, 2007 (pp. 79-84).

[8] Beltran, M., Guzman, A., & Bosque, J. L. (2008, July). A new cpu availability prediction model

for time-shared systems. IEEE Transactions on Computers, 57(7), 865-875.

[9] Casavant, T. L., & Kuhl, J. G. (1988, February). A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering, 14(2), 141-154.

[10] Dong, B., Li, X., Wu, Q., Xiao, L., & Ruan, L. (2012). A dynamic and adaptive load balancing

strategy for parallel file system with large-scale i/o servers. Journal o f Parallel and Distributed

Computing, 72(10), 1254- 1268.

[11] Foster, I., Kesselman, C., & Tuecke, S. (2001, August). The anatomy of the grid: Enabling scalable

virtual organizations. Int. J. High Perform. Comput. Appl, 15(3), 200-222.

56

Siti Hasm
ah

Digital Library

www.manaraa.com

[12] Grande, R. E. D., & Boukerche, A. (2011). Dynamic balancing of communication and compu­

tation load for hla-based simulations on large-scale distributed systems. Journal o f Parallel and

Distributed Computing, 71(1), 40 - 52.

[13] Groot, S., Goda, K., & Kitsuregawa, M. (2010). A study on workload imbalance issues in data

intensive distributed computing. In S. Kikuchi, S. Sachdeva, & S. Bhalla (Eds.), Databases in

networked information systems (Vol. 5999, p. 27-32). Springer Berlin Heidelberg.

[14] Grosu, D., Chronopoulos, A. T., & Leung, M. Y. (2008, November). Cooperative load balancing in

distributed systems. Concurr. Comput. : Pract. Exper., 20(16), 1953-1976.

[15] Gupta, R., & Gopinath, R (1990, April). A hierarchical approach to load balancing in distributed

systems. In Proceedings o f the fifth distributed memory computing conference (Vol. 2, pp. 1000-

1005).

[16] Iosup, A., Dumitrescu, C., Epema, D., Li, H., & Wolters, L. (2006). How are real grids used? the

analysis of four grid traces and its implications. In Grid computing, 7th ieee/acm international

conference on (p. 262-269).

[17] Kalantari, M., & Akbari, M. (2008). Fault-aware grid scheduling using performance prediction by

workload modeling. The Journal o f Supercomputing, 46(1), 15-39.

[18] Lin, W., & Shen, W. (2010, June). Tree-based task scheduling model and dynamic load-balancing

algorithm for p2p computing. In IEEE 10th international conference on computer and information

technology (CIT) (pp. 2903-2907).

[19] Lu, K., Subrata, R., & Zomaya, A. Y. (2006, May). Towards decentralized load balancing in a

computational grid environment. In Advances in grid and. petyasive computing (Vol. 3947, pp.

466M77). Springer Berlin Heidelberg.

[20] Lu, K., Subrata, R., & Zomaya, A. Y. (2007, December). On the performance-driven load

distribution for heterogeneous computational grids. I. Comput. Syst. ScL, 73(8), 1191-1206.

[21] Lu, K., & Zomaya, A. Y. (2007, July). A hybrid policy for job scheduling and load balancing in

heterogeneous computational grids. In Sixth international symposium on parallel and distributed

computing, 2007. ispdc ’07. (pp. 19-27).

[22] Mamat, A., Lu, Y., Deogun, J., & Goddard, S. (2012). Efficient real-time divisible load scheduling.

Journal o f Parallel and Distributed Computing, 72(12), 1603 - 1616.

57

Siti Hasm
ah

Digital Library

www.manaraa.com

[23] Mukhopadhyay, R., Ghosh, D., & Mukherjee, N. (2010). A study on the application of existing

load balancing algorithms for large, dynamic, heterogeneous distributed systems. In Proceedings

of the 9th wseas international conference on software engineering, parallel and distributed systems

(pp. 238-243). Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and

Society (WSEAS).

[24] Nandagopal, M., Gokulnath, K., & Uthariaraj, V . R. (2010, September). Sender initiated decentral­

ized dynamic load balancing for multi cluster computational grid environment. In Proceedings o f

the 1st amrita acm-w celebration on women in computing in india (pp. 63:1-63:4). New York, NY,

USA: ACM.

[25] Nandagopal, M., Gokulnath, K., & Uthariaraj, V . R. (2011, March). Load distribution through

optimal neighbor selection in decentralized grid environment. European Journal o f Scientific

Research, 50(4), 575-585.

[26] Ni, L. M., Xu, C.-W., & Gendreau, T. B . (1985, October). A distributed drafting algorithm for

load balancing. IEEE Transactions on Software Engineering, SE-11(10), 1153-1161.

[27] Penmatsa, S., & Chronopoulos, A. T. (2011). Game-theoretic static load balancing for distributed

systems. Journal o f Parallel and Distributed Computing, 71(4), 537 - 555.

[28] Plentz, P., Montez, C„ & de Oliveira, R. (2008). Deadline missing predictor based on aperiodic

server queue length for distributed systems. Computer Communications, 31(11), 4167 - 4175.

[29] Plentz, P., Montez, C., & de Oliveira, R. (2011). AS prediction mechanism for distributed threads

systems. Journal o f Parallel and Distributed Computing, 77(10), 1367 - 1376.

[30] Ranjan, S., & Knightly, E. (2008, Sept). High-perfonnance resource allocation and request

redirection algorithms for web clusters. Parallel and Distributed Systems, IEEE Transactions on,

19(9), 1186-1200.

[31] Rao, I., & Huh, E.-N. (2008). A probabilistic and adaptive scheduling algorithm using system­

generated predictions for inter-grid resource sharing. Die Journal o f Supercomputing, 45(2),

185-204.

[32] Riakiotakis, I., Ciorba, F. M., Andronikos, T., & Papakonstantinou, G. (2011). Distributed

dynamic load balancing for pipelined computations on heterogeneous systems. Parallel Computing,

J7(10all), 713 -729.

58

Siti Hasm
ah

Digital Library

www.manaraa.com

[33] Santana-Santana, J., Castro-Garcia, M. A., Aguilar-Comejo, M., & Roman-Alonso, G. (2010,

February). Load balancing algorithms with partial information management for the DLML library.

In 2010 18th euromicro international conference on parallel, distributed and network-based

processing (PDP) (pp. 64—68).

[34] Stankovic, J. A., & Sidhu, I. S. (1984). An adaptive bidding algorithm for processes, clusters and

distributed groups. In ICDCS (pp. 49-59).

[35] Stavrinides, G. L., & Karatza, H. D. (2009, August). Fault-tolerant gang scheduling in distributed

real-time systems utilizing imprecise computations. Simulation, 85(8), 525-536.

[36] Stavrinides, G. L., & Karatza, H. D. (2010). Scheduling multiple task graphs with end-to-end

deadlines in distributed real-time systems utilizing imprecise computations. Journal o f Systems

and Software, 83(6), 1004 - 1014. (Software Architecture and Mobility)

[37] Subrata, R., Zomaya, A., & Landfeldt, B. (2008, Jan). Game-theoretic approach for load balancing

in computational grids. Parallel and Distributed Systems, IEEE Transactions on, 19(1), 66-76.

[38] Varga, A., & Homig, R. (2008). An overview of the OMNeT++ simulation environment. In

Proceedings of the 1st international conference on simulation tools and techniques for communica­

tions, networks and systems & workshops (pp. 60:1-60:10). ICST, Brussels, Belgium, Belgium:

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[39] Waraich, S. S. (2008, April). Classification of dynamic load balancing strategies in a network of

workstations. In Fifth international conference on information technology: New generations, 2008.

itng 2008 (pp. 1263-1265).

[40] Wu, Y., Hwang, K., Yuan, Y., & Zheng, W. (2010, July). Adaptive workload prediction of grid

perfonnance in confidence windows. IEEE Transactions on Parallel and Distributed Systems,

21(1), 925-938.

[41] Yang, L., Foster, I., & Schopf, J. M. (2003, April). Homeostatic and tendency-based cpu load

predictions. In Proceedings o f international parallel and distributed processing symposium, 2003

(p. 9 pp.-).

[42] Zhou, S. (1988, September). A trace-driven simulation study of dynamic load balancing. IEEE

Transactions on Software Engineering, 14(9), 1327-1341.

59

Siti Hasm
ah

Digital Library

www.manaraa.com

PUBLICATION LIST

[1] Lim, J. W. Y., Poo, K. H., & Yeoh, E.-T. (2012a, February). Heuristic neighbor selection

algorithm for decentralized load balancing in clustered heterogeneous computational environment.

In Advanced Communication Technology (ICACT), 2012 14th International Conference (pp. 1215—

1219).

[2] Lim, J. W. Y., Poo, K. H., & Yeoh, E.-T. (2012b, November). Neighbor’s Load Prediction for

Dynamic Load Balancing in a Distributed Computational Environment. In TENCON 2012 - 2012

IEEE Region 10 Conference (pp. 1-6).

[3] Lim, J. W. Y., Poo, K. H., Yeoh, E.-T., & Tan, I. K. T. (2011, November). Performance analysis of

parallel computing in a distributed overlay network. In TENCON 2011 - 2011 IEEE Region 10

Conference (pp. 1404-1408).

60

Siti Hasm
ah

Digital Library

www.manaraa.com

CO

I
CD
</)

CD

D
c q '

CD

O "

CD

